Search results for "Coxeter graph"

showing 3 items of 3 documents

Homeomorphic graph manifolds: A contribution to the μ constant problem

1999

Abstract We give a characterization, in terms of homological data in covering spaces, of those maps between (3-dimensional) graph manifolds which are homotopic to homeomorphisms. As an application we give a condition on a cobordism between graph manifolds that guarantees that they are homeomorphic. This in turn is applied to give a partial result on the μ -constant problem in (complex) dimension three.

SingularityDimension (graph theory)CobordismBanach manifoldHomology equivalenceCovering spaceμ constant problemMathematics::Algebraic TopologyMathematics::Geometric TopologyDistance-regular graphManifoldCombinatoricsCoxeter graphSeifert fibered spaceMilnor fiberGraph manifoldEdge-transitive graphRicci-flat manifoldComplex algebraic surfaceGeometry and TopologyMathematics::Symplectic Geometry3-manifoldHomeomorphismMathematicsTopology and its Applications
researchProduct

Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups

1999

It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter-type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lowest common multiples exist. A Garside monoid is a Gaussian monoid in which the left and right lowest common multiples satisfy an additional symmetry condition. A Gaussian group is the group of fractions of a Gaussian monoid, and a Garside group is the group of fractions of a Garside monoid. Braid groups and, more genera…

CombinatoricsMonoidMathematics::Group TheoryCoxeter graphGeneral MathematicsArtin L-functionBraid groupArtin groupArtin reciprocity lawWord problem (mathematics)AutomorphismMathematicsProceedings of the London Mathematical Society
researchProduct

Centralizers of Parabolic Subgroups of Artin Groups of TypeAl,Bl, andDl

1997

Abstract Let ( A , Σ) be an Artin system of one of the types A l , B l , D l . For X  ⊆ Σ, we denote by A X the subgroup of A generated by X . Such a group is called a parabolic subgroup of ( A , Σ). Let A X be a parabolic subgroup with connected associated Coxeter graph. We exhibit a generating set of the centralizer of A X in A . Moreover, we prove that there exists X ′ ⊆ Σ such that A X ′ is conjugate to A X and such that the centralizer of A X ′ in A is generated by the centers of all the parabolic subgroups containing A X ′ .

CombinatoricsDiscrete mathematicsMathematics::Group TheoryCoxeter graphAlgebra and Number TheoryGroup (mathematics)Generating set of a groupCharacteristic subgroupCentralizer and normalizerConjugateMathematicsJournal of Algebra
researchProduct